我永远喜欢珂朵莉~
对于每一个 aia_iai,若有 kkk 个比他小的数,那么他记录的次数即:
∑i=0k−1(ik−1)×i!×(n−i−1)!=∑i=0k−1(k−1)!(k−i−1)!×(n−i−1)!=(k−1)!∑i=0k−1n−1−ik−1−i(n−k)!=(k−1)!(n−k)!(nk−1)=n!n−k\begin{aligned} &\sum_{i=0}^{k-1}\binom{i}{k-1}\times i!\times(n-i-1)!\\ =&\sum_{i=0}^{k-1}\dfrac{(k-1)!}{(k-i-1)!}\times(n-i-1)!\\ =&(k-1)!\sum_{i=0}^{k-1}\dfrac{n-1-i}{k-1-i}(n-k)!\\ =&(k-1)!(n-k)!\binom{n}{k-1}\\ =&\dfrac{n!}{n-k} \end{aligned}====i=0∑k−1(k−1i)×i!×(n−i−1)!i=0∑k−1(k−i−1)!(k−1)!×(n−i−1)!(k−1)!i=0∑k−1k−1−in−1−i(n−k)!(k−1)!(n−k)!(k−1n)n−kn!
求和,做完了
code
扫码打赏,你说多少就多少